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Unity-resolving states and generalised Golden-Thompson 
bounds on partition functions 

Hajo Leschket, Joachim Stolze and Michael Moraweck 
Institut fur Physik der Universitat Dortmund, D-4600 Dortmund 50, West Germany 

Received 27 June 1979 

Abstract. It is shown that certain sets of normalised unity-resolving (e.g. coherent) states in 
Hilbert space serve to generate upper bounds on the partition function of a given 
Hamiltonian in that space. These bounds may be viewed as generalisations of bounds 
derived previously by Golden, Thompson, Hepp and Lieb. The new bounds are compared 
to the original Golden-Thompson bound by proving several theorems and by computing 
explicit examples. 

1. Introduction 

Due to the complexity of quantum statistical problems one is in most cases forced to find 
some approximations to the relevant physical quantities. A standard non-perturbative 
tool of increasing popularity is the use of rigorous bounds or estimates for these 
quantities. The value of such bounds is at least two-fold. On the one hand, they often 
allow one to prove general (convexity) properties of thermodynamic potentials and 
rigorous (non-)existence theorems (cf for example Griffiths 19721, and on the other 
hand, they often provide calculable variational-type approximations, reflecting the 
main physical properties of the model under consideration. Perhaps the most prom- 
inent example of this kind is given by the mean field approximation which is based on 
the Rayleigh-Ritz-Peierls-Bogolyubov upper bound for the free energy (cf for 
example Huber 1969, 1970). 

While it is true that upper bounds for the free energy are frequently encountered, 
the situation is different for lower bounds. Among the few examples for lower bounds 
we refer to the inequality 

s Tr(e-PA e-PB) (1.1) T~ e-P(A+B) 

for the partition function TrePPH of a Hamiltonian of the form H = A + B .  This 
inequality has been first derived by Golden (1965) and Thompson (1965) (cf also 
Breitenecker and Grumm 1972, Ruskai 1972, Lieb 1973a, Reed and Simon 1978). 

The aim of the present paper is to present a generalisation of the right-hand side of 
(1.1) which is based on a ‘pseudo-diagonal representation’ of the operator B with 
respect to a general set of normalised ‘unity-resolving’ states in Hilbert space. If these 
states are chosen to be the eigenstates of B, the pseudo-diagonal representation of B 
coincides with its spectral resolution and the bound given in (1.1) is recovered. If in the 

T Present address: Institut fur Theoretische Physik der Universitat Dusseldorf, D-4000 Dusseldorf 1, West 
Germany. 
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case of the Hilbert space L2(rW) boson coherent states are chosen, the corresponding 
pseudo-diagonal representation of B is analogous to the P representation (Cahill and 
Glauber 1969) of statistical operators often used in quantum optics. The corresponding 
upper bound on the partition function generalises a bound derived by Lieb (1973b) and 
Hepp and Lieb (1973) and used by them to discuss the classical limit of quantum spin 
systems and the equilibrium statistical mechanics of matter interacting with radiation, 
with particular emphasis on the Dicke maser. 

Other problems where similar (upper and/or lower) bounds have been recently 
applied include the Peierls transition in (quasi-)one-dimensional electron-phonon 
systems (Brandt and Leschke 1974, Siegl 1979) and the density of states in disordered 
electronic systems (Luttinger 1976, Gross 1977). 

The main advantages of the present generalised Golden-Thompson bound with 
respect to the original Golden-Thompson bound are: 

(i) its flexibility due to the possibility of choosing different sets of unity-resolving 

(ii) the fact that it is often easier to compute, 
(iii) the fact that it is in some cases closer to the exact partition function. 
The plan of this paper is as follows. In Q 2 the notions of a set of unity-resolving 

states and of the corresponding pseudo-diagonal representation of a given operator are 
introduced and illustrated by way of examples. Section 3 is devoted to the proof of the 
generalised Golden-Thompson inequality which is our main result. Special cases of this 
inequality are discussed in Q 4. In 8 5 the generalised and the original Golden- 
Thompson bounds are systematically compared to each other. We show that the 
Golden-Thompson bound is better than the generalised Golden-Thompson bound in 
several limiting cases. That the converse relation may also hold is demonstrated by 
deriving a special criterion and by computing explicit examples. 

states, 

2. Unity-resolving states and pseudo-diagonal representations of operators 

The starting point of our considerations is a set {ii)} of normalised but not necessarily 
orthogonal states li) in a separable Hilbert space Yt' of finite or infinite dimension. We 
assume that these states provide a resolution of unity in the sense that 

with certain non-negative weights wi. If i represents a continuous label, the sum is to be 
understood as an appropriate integral (Klauder 1963). If the cardinal number of the set 
of non-vanishing weights wi in (2.1) exceeds the dimension of Yt' (=Xiwi ) ,  the set {li)} is 
overcomplete. 

We are interested in cases where a linear (self-adjoint) operator B acting in X is 
represented as 

with some (real) c-numbers bi. We shall refer to this representation as the pseudo- 
diagonal representation of B with respect to the set {li)}. For given {li)} and {wi} 
fulfilling (2.1) this representation may not exist even for 'simple' operators; if it exists, it 
need not be unique and there seems to be no general procedure to obtain a set {bi}. 
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For illustrative purposes and for later use we offer the following examples. 
(i) Complete orthonormal sets. Any complete orthonormal set {li)} in 2 fulfils (2.1) 

with wi = 1 for all i. The representation (2.2) exists if and only if B commutes with all 
projections li)(i/. Clearly, in that case (2.2) coincides with the spectral or diagonal 
resolution of B, the bi being the uniquely determined (though often not known) 
eigenvalues. 

Other sets, for which the bi may be explicitly calculated for many operators, are 
given by non-orthogonal and overcomplete states, the most prominent being the 

(ii) Sets of coherent states. According to Klauder (1963) and Perelomov (1977), 
with any Lie group of unitary transformations and any fixed normalised reference state 
in Hilbert space there is associated a set of continuously labelled states which are 
nowadays usually called coherent. We briefly describe two examples, namely the boson 
coherent states and the spin coherent states associated with the translation group and 
the rotation group, respectively, where we restrict ourselves to a single degree of 
freedom for the sake of notational transparency?. 

As to the boson coherent states, the underlying Lie algebra may be characterised by 
the unit operator 1, an annihilation operator a and its adjoint creation operator a+ 
acting in the Hilbert space 2 = L2(R)  of square integrable complex-valued functions of 
a real variable and fulfilling the canonical commutation relation: 

aa+-a+a = 1. (2.3) 

la) := exp(aa+-a*a)lO) (2.4) 

With any c-number a there is associated a boson coherent state 

generated from the normalised ground state 10) of u+a. These states enjoy the 
properties 

(a la ' )=exp a*a'---- i 2 2  

a la )  = ala)  (2.7) 

where 5 d2a  means 

(ala)  = 1 and the resolution of unity (2.6) remain valid (Klauder 1963). 

B (a, a +) is 

d Re a 1':' d Im a. 
If one substitutes for 10) in (2.4) an arbitrary normalised state I$), the normalisation 

The pseudo-diagonal coherent state representation of a given operator B = 

The (generalised) function b ( a )  may be obtained by substituting a for a and a* for a+ 
in the antinormal-ordered form of B, the latter resulting (if it exists as a convergent 
operator power series) by bringing with the help of (2.3) all a to the left of all a+. For 
further details, especially for questions of convergence, see Cahill and Glauber (1969). 

t For more general coherent states, their properties, some of their applications, and relevant earlier 
references the reader is again referred to Perelomov (1977). 
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Important operators B for which b ( a )  is explicitly known include all polynomials and 
the exponential of a general quadratic form in a and a+ (Wilcox 1967, Mehta 1977). 

The underlying Lie algebra for the spin coherent states consists of the unit operator 
and the three components S,, S,, S,  of a spin operator S ( S 2  = J(J + l ) ,  J fixed) acting in 
the (25 + 1)-dimensional Hilbert space X = C2'+* and obeying angular momentum 
commutation relations ( A  = 1) 

S,S, - S,S, = is, and cyclically. (2.9) 

With any pair R := ( O , q 5 )  of real numbers B and q5 (0 s e s 7r, 0 s q5 < 27r) there is 
associated a spin coherent state: 

generated from the normalised ground state IJ) of -SZ, where as usual 

S, := S,  *isy. (2.11) 

The properties analogous to (2.5) and (2.6) are 

I dR IR)(Rl= 1 
4lr 

(2.12) 

(2.13) 

where 1' dR means 1': dB sin 0 d4.  
Every operator B = B ( S )  has a pseudo-diagonal coherent state representation: 

(2.14) 

where the function b (R) may always be chosen to be infinitely differentiable (Lieb 
1973b). This choice, however, does not ensure uniqueness as the following example for 
J = d demonstrates: 

(2.15) 

Since there is no property analogous to (2.7) there is no construction recipe for b(R) 
based on (re)ordering; useful formulae are, however, given by Lieb (1973b). 

3. Generalised Golden-Thompson bound 

In this section we are going to derive for self-adjoint operators A and B bounded from 
below the following generalisation of the Golden-Thompson inequality (1.1): 

.s Tr(e-PAPB) =: ZGGT (3.1) T~ e-P(A+B) 

where the operator PB is defined by 

(3.2) 
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The sets {li)}, { w , } ,  {b,} are assumed to fulfil (2.1) and (2.2), and p > 0 has the physical 
meaning of an inverse temperature. 

To prove (3.1) we start from the Lie-Trotter-type formula 

c w,  e-(p/n)bt I i x i  1 ) "  (3.3) e-B(A+B) = lim (e-(Bln)A 

i n +m 

being valid because &w, e-(P'n)bili)(il equals 
of (3.3) yields (with io := in )  

up to first order in l / n .  The trace 

Interpreting the 'transfer matrix' 

K,(i, j ' )  := (ile-"li')(wiwi,)1'2 (3.5) 

as the matrix representation of an operator K, in the Hilbert spacet 2 of square 
summable c-number sequences {ti}:.=, we can rewrite (3.4): 

where Tr9 means the trace in 2, in contrast to Tr=Trx. The inequality (3.1) is thus 
equivalent to the inequality 

lim Trs K$ln s TrY KO. (3.7) 
n-tm 

In order to prove (3.7) we start from the factorisation 

K, = LM, (3.8) 
where the self-adjoint operators L, and M, are defined by the matrices 

and enjoy the (semi-)group properties 

LL,' = L,,,' M,M,. = M,,,.. (3.10) 

We note that it is sufficient to prove (3.7) for the subsequence n = 2" (m E N) and recall 
the following 'iterated Schwarz-type inequality' also due to Golden (1965) and Thomp- 
son (1965): 

/Tr9(PQ)"1 <TryPnQn for n = 2"(m E N) (3.11) 

valid for any two self-adjoint operators P and Q acting in 2. Putting together (3.8), 
(3.10) and (3.11) we obtain for n = 2": 

ITrY K b ,  1 6 Tr&&JGln 1 = Trs(LpMp) = Trz  KP (3.12) 

which completes the proof of (3.7) and hence of (3.1). 

f If i is a continuous label, KT(i, i') is actually a transfer kernel and the summations are integrations. In that 
case the space 2 in which K, acts is the space L2 ({i}) of square integrable functions defined on the label set {i}, 
e.g. the two-dimensional real plane for boson coherent states or the surface of the three-dimensional unit 
sphere for spin coherent states. 



1316 HLeschke, JStolze and MMoraweck 

4. Special cases 

Choosing appropriate unity-resolving states and/or operators we may obtain from (3.1) 
several more or less well-known inequalities, some of which we are going to list in the 
following. 

(i) If the states li) in (3.1) are assumed to be orthogonal (which implies that they are 
eigenstates of 8) the original Golden-Thompson inequality is reproduced. 

(ii) If the states li) are chosen to be the boson coherent states (2.4), the inequality 
(3.1) reads 

with the ‘antinormal symbol’ b ( a )  of B defined by (2.8). This inequality has been 
reported earlier by one of us (Leschke 1979). 

(iii) For A = 0 the inequality (3.1) reduces to 

(4.2) 

which for i = SZ and i = a  was derived by Lieb (1973b) and Hepp and Lieb (1973), 
respectively. In fact, their method of proof provided the basis of our proof of the 
generalised Golden-Thompson inequality. It is, however, interesting to note that (4.2) 
may be proved more simply as we now proceed to demonstrate. 

Denoting by {In)} a complete set of orthonormal eigenstates of B and using (2.2) we 
have 

Since wil(nli)i2 defines for fixed n a probability measure p on the label set {i}, we can 
employ Sensen’s inequality (Hardy et a1 1967) 

e“’ s (e‘) (4.4) 

where ( ) denotes the mean value with respect to p and [ is any real random variable on 
{i}. The result is 

which is (4.2) in view of 

5. Comparison 

The purpose of this section is to compare the generalised Golden-Thompson bound 
Z G G T  given in (3.1) to the original Golden-Thompson bound ZGT given in (1.1) in order 
to see which one is closer to the true partition function Z of the ‘total Hamiltonian’ 
A + B .  



Generalised Golden-Thompson bounds 1317 

We list the following statements. The GT bound is better than or equivalent to the 
GGT bound (i.e. ZGT~ZGGT): 

(i) if A and B commute, 
(ii) if PB and B commute (being true, e.g. in the case of boson coherent states, if B 

is a function only of a + a+ or a -a+  or (a+-  S*)(a - S )  for any c-number S),  
(iii) if the temperature 1 / p  is sufficiently high and the bi are bounded (implying that 

B is bounded)t, 
(iv) if in the case of boson coherent states B is a polynomial of a and a+, Tr e-PcA 

exists for some pC> 0, and the temperature is sufficiently low. 
Although in these cases the GT bound is better than the GGT bound we want to 

stress that the GGT bound is often easier to compute. In other cases the GGT bound 
may also be better than the G T  bound, which we will illustrate below by a criterion for 
the discrete label case and by two examples. We first comment on the proofs of 
stat em en ts (i) - (iv) . 

(i) In this case one simply observes ZGT = 2. 
(ii) In this case PB is diagonal with respect to a complete set {In)} of orthogonal 

eigenstates In) of B. Hence 

P B  =C In>(nlPBln)(nl 
n 

Using (4.4) we get 

n 

=E In)(nl exp(-p(nlBln)) =e-pB. 
n 

Averaging this operator inequality with the ‘density matrix’ eCPA yields the 
result. 

(iii) We show that up to order p2  the operator PB -e-PB is non-negative: 

2 
lim 7 (PB - 
P - 0  p 

= wib? li)(il- B 2  

= 

i 

wi[(B - bi)li)(il][(B - bi)li)(i/]’ 3 0. 

(iv) If B is a c-number multiple of unity the statement is obvious due to (i). We 
therefore can exclude this case. Since B is a polynomial and bounded from below, b (a )  
is a polynomial and has a minimum: 

bo := min b(a) .  (5.4) 
a 

?We believe that statement (iii) holds true also for some (A-dependent) class of unbounded operators B 
which we are unfortunately not able to characterise in a simple non-technical way. 
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Otherwise one would have a contradiction to Ritz's principle valid for any normalised 
I*): 

with E B  being the ground-state energy of B. 
Now we observe that 

(5.6) 

where equality is excluded because b ( c y )  is non-constant. Taking the ground-state 
expectation value we obtain 

EB >bo. (5.7) 

Furthermore, it follows from Ritz's principle that 

e-PB e-@'B1. 

As a consequence, we have for p 3 &: 

Tr(e-PA e-PB) s e-@'B Tr e-PA. 

On the other hand, we have from the spectral resolution of A 

3 e-OAEA (5.10) 

for any real A ,  where EA is the spectral projection: of A corresponding to the interval 
(-a, A ) .  Combining (5.9) and (5.10) we get 

A z  := Z G G T - Z G T 3 e - "  Tr(EAPB)-e-P'B Tr e-PA, (5.11) 

Without loss of generality we can assume 

bo = 0 EA = 0 (5.12) 

where E A  is the ground-state energy of A.  For the special choice A = EB/2, (5.1 1) leads 
to 

A Z  3 e-P'B/2[Tr(E,B/2PB) - Tr e-'^] 

1 (5.13) 

where I$) is a normalised state in the subspace onto which EEB/2 projects. Since Tr e-PA 
and ($lPB1$) are monotonically decreasing functions of p (for p 3 pc) the RHS of (5.13) 
becomes positive for sufficiently large p if ($IPBI$) decreases slower than exponen- 
tially, i.e. if 

lim eSS($IPBl+) = 03 for all S > 0. (5.14) 

For given 6 there exists, due to the continuity of b ( a ) ,  a region Rs of the cy plane such 

3 e - P ' ~ ' 2 [ ( ~ I ~ B I ~ ) - e  -PEB/Z T~ e-flA 

P -m 

t Formally Eh = B ( A  - A ) ,  where B is the Heaviside step function. 
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that b ( a )  < S / 2  for all Q E Rs. Hence: 

(5.15) 

(5.16) 

and the integral 

does not vanish since ($1.) e'a'2'2 is a non-constant analytic function of Q (Klauder 
1963) and thus has at most isolated zeros. This completes the proof of (5.14) and thus of 
statement (iv). 

We are now going to show that in the case of a discrete label set { i }  either of the two 
bounds may be the better one for low temperatures. To this end we first estimate the 
A-expectation value: 

(5.17) ( . ) A  := Tr e-'"(. )/Tr e-'" 

of PB -e-'B. Using (5.8) and 

PB wi e+bili)(il for any i (5.18) 

we obtain: 

(pB 3 wi e-Pbi(li)(il)A -e-"B. (5.19) 

Let us now look for an index i such that the RHS of (5.19) can become positive in the 
limit p + 00. For this purpose we note that for any normalised I$) 

Wl+) 2 bl, (5.20) 

where ilL is an index such that 

bi, =min{biIwi(il+)#O}. (5.21) 
I 

The proof of (5.20) is as follows: 

(+IBI+> =C wibiI(iI+)12 
i 

= 1' wibiI(jI+)12 

2 bi, C' wiI(iI$)12 

= bi, wil(il+)12 = bi, 

i 

i 

i 

where the prime denotes summation over all indices i such that bi 3 bi,. 
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Choosing the normalised ground state I$o) of B for I$) in (5.20) we obtain 

EB 2 bi, with io := i*,. (5.22) 

We now recall that 

(5.23) 

where lcpo) is a normalised ground state of A. Choosing i = io in (5.19) we see that the 
RHS of (5.19) becomes positive for p +CO if the following two conditions hold: 

(5.24) 

(5.25) 

In this case the GT bound is better than the GGT bound for sufficiently low tempera- 
tures. 

We now demonstrate, by way of an example, that the converse relation between the 
two bounds may hold if one of the above conditions is violated. We consider a 
two-dimensional (spin-2) Hilbert space spanned by two orthonormal states 11) and 12). 
These states, supplemented by the two states 

form an overcomplete set with 

4 
1 z ii)(il= 1. 

i = l  

We define two operators A and B by 

A := piIlJ(1I + WP)(~I 

where the real numbers p1, p2 and b are assumed to fulfil 

Fl’CL2 b > 0 .  

The pseudo-diagonal representation of B reads 

4 

B =$ bili)(il 
i = l  

(5.26) 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

where 
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The eigenvalues A, and corresponding normalised eigenstates I*) of B are given by 

b 
A*=*-- 

2 J 2  

77 77 I + )  = sin - 1 1 )  8 -cos -12) 8 (5.32) 

77 77 
I-)=cos-ll)+sin-/2). 

8 8 

The index io defined in (5.21) and (5.22) therefore equals 1 and the condition (5.25) is 
violated. The GT and GGT bounds corresponding to A and B are easily calculated to 
be 

2 7 7  2 7 7  ZGT = exp[-p ( p  + A +)] sin - + exp[-p ( p l  +A-) ]  cos - 8 8 

(5.33) 2 7 7  + exp[-p (p2 + A + ) ]  cos2 H+ exp[-@ ( p 2  + A-)] sin - 8 8 

and 

ZGGT = t e-PF*(ePb +$ e-@b +$) +$ e-PF2(:+; e-@b ). (5.34) 

Comparing the leading exponentials of the two bounds for p r, a3 one finds in that limit 

The crucial feature of the above example (and similar ones) lies in the fact that all states 
ti) corresponding to bi below the ground-state energy of B (in the above example, only 
the state 11)) are orthogonal to the ground state of A.  

In order to demonstrate that in the case of boson coherent states the GGT bound 
may be better than the G T  bound for intermediate temperatures we offer the following 
example. We define in the (Fock-)Hilbert space of a single boson mode two operators 
of the harmonic oscillator type: 

A := E(u++iG)(a -is) 
7 7 2  

2 
B := W U + U  + - ( U  

(5.36) 

in terms of the annihilation operator a and the creation operator a+. The real numbers 
E, 6, w and 77 are assumed to fulfil 

E > O  w > v b O .  (5.37) 

Under these conditions both operators are bounded from below and have finite 
partition functions. 

The operator PB associated via (3.2) with B and the boson coherent states (2.4) 
reads 

(5.38) 
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with 

(5.39) 7 7 2  

2 
b ( a )  = w (la l 2  - 1) + - ( a  + a * 2 )  

being the ‘antinormal symbol’ of B. We have calculated the G T  bound on Tr 
with the help of the normal-ordered form of e-PB and the antinormal-ordered form of 
e-PA given, for example, in Wilcox (1967) and Mehta (1977). The result is 

Z G T  = Tr(e-pA e-pB) 

(5.40) 
( u  - s  - l ) ( u s y  -us2 c e  

uu - U S - U  - U  + s  - - 2 2 1/2 expj [ ( u u - v - U )  - ( s - s u )  ] 

where we have used the abbreviations: 

U := 1 - e-pe := ( @ 2  - 772)1/2 

c := e””?(coshpR+Esinhpfl  R 

U := (w+RcothpR)- ’  

s := ~ ( w  + R  coth PO)-’. 

(5.41) 

The GGT bound may be found from (5.38), (5.39) and the normal-ordered form of 
e-PA. 

(5.42) 

In order to simplify things let us ask how Z G T  and Z G G T  look for 

pw >> 1 q / w  << 1. (5.43) 

Neglecting terms of order ( 7 / w ) 2  we have in that limit 

v = l  c = l  s = 77/2w (5.44) 

and hence from (5.40) and (5.42): 

Assuming 

P77 ’2 

(5.45) 

we see from these expressions that ZGGT is better than ZGT (i.e. ZGGT < ZGT) if 

(5.46) 

-1/2 
u IS 1 b pw (2 P77 - 1) (5.47) 
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The important feature of the above example lies in the fact that B and PB do not 
commute. This allows us to find a region R of the LY plane such that for intermediate p 

(a l P B l 4  (a le-PB14 for a ER. (5.48) 

In fact, the operator B as given in (5.36) is the simplest polynomial with this property. If 
the operator A is now such that the function ~ A ( C Y )  in the representation 

(5.49) 

is concentrated in R, it follows from (5.48) that ZGGT is better than ZGT. In particular, 
for the operator A in (5.36) fA(a)  is a Gaussian centred around is. 

6. Concluding remarks 

We have shown that certain sets of normalised unity-resolving states in Hilbert space 
serve to generate upper bounds (3.1) on the partition function Tr e-PH of a Hamiltonian 
of the form H = A + B. We have called each of these bounds a generalised Golden- 
Thompson bound (GGT bound) because it reduces to the Golden-Thompson bound 
Tr(e-OA e-pB) if the unity-resolving states are chosen to be the eigenstates of B. Other 
important choices for the unity-resolving states are all kinds of coherent states. In 
particular, in the case of boson or spin coherent states our bound generalises results of 
Lieb (1973b) and Hepp and Lieb (1973). We want to stress that the GGT bound has 
built into it a considerable amount of flexibility which can be used to optimise it. One 
degree of flexibility is present already in the original Golden-Thompson bound, namely 
the possibility to subdivide a given H into A and B in different ways. An additional 
degree of flexibility stems from the fact that one is free to choose different sets of 
unity-resolving states. As an example for a systematic variation of these sets we 
mention the possibility of varying a set of coherent states by varying its underlying 
reference state. Thereby one gets a variational principle for the free energy from below 
in contrast to the more common Rayleigh-Ritz-Peierls-Bogolyubov principles, giving 
upper bounds on the free energy. We finally remark that many of our results have an 
obvious generalisation to the case where additional degrees of freedom are coupled to 
the ones considered by us. 
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Nore added in proof. After completion of this work we became aware of Berezin’s inequalities (Berezin F A 
1972 Marh. USSR Sbornik 17 269-77, Berezin F A  1972 Mark USSR Zzvesfija 6 11 17-51) which generalise 
the Hepp-Lieb inequalities to arbitrary sets of unity-resolving states (cf equation (4.2) of this work) and to 
arbitrary convex operator functions. Furthermore, we want to draw the reader’s attention to the interesting 
Princeton preprint ‘The Classical Limit of Quantum Partition Functions’ by B Simon (to be published in 
Commun. Math. Phys.) which contains related material and in particular extends the work of Lieb (1973b) on 
the classical limit of quantum SO(3) spin systems to general compact Lie groups. 
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